
A Stable Adaptive Extended Kalman Filter for Estimating Robot
Manipulators Link Velocity and Acceleration

Seyed Ali Baradaran Birjandi1,∗, Harshit Khurana2, Aude Billard2 and Sami Haddadin1

Abstract— One can estimate the velocity and acceleration
of robot manipulators by utilizing nonlinear observers. This
involves combining inertial measurement units (IMUs) with the
motor encoders of the robot through a model-based sensor
fusion technique. This approach is lightweight, versatile (suit-
able for a wide range of trajectories and applications), and
straightforward to implement. In order to further improve the
estimation accuracy while running the system, we propose to
adapt the noise information in this paper. This would automat-
ically reduce the system vulnerability to imperfect modelings
and sensor changes. Moreover, viable strategies to maintain the
system stability are introduced. Finally, we thoroughly evaluate
the overall framework with a seven DoF robot manipulator
whose links are equipped with IMUs.

I. INTRODUCTION AND STATE OF THE ART

Kalman filter has been widely used for different purposes.
Indeed, the early success of Kalman filters in aerospace
programs in the 1960s gave rise to industrial applications.
However, the filter works well as long as both the model and
noise statistics, which are provided to it, remain accurate. In
fact, degradation in estimation precision or even divergence
is noticeable once either the model or noise information is
inaccurate [1]. This flaw became apparent soon after the
Kalman filter emergence (look at, e.g., [2]). Governments
spent millions of dollars on space programs in the 1960s,
where the systems and the noise statistics were modeled with
high fidelity. However, the industry has a limited budget and,
thus, may face hardships when using Kalman filters in the
intended applications [3].

Accurate modeling of dynamic systems is beyond the
scope of Kalman filters and requires separate treatment.
Moreover, the noise statistics can be optimally estimated
offline in some special cases only [4]. Therefore, different
approaches are proposed in the literature to overcome this
difficulty by online adapting the noise information, which
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Fig. 1. Summary of the topics covered in the paper.

is given to the filter in terms of noise covariance. One of
the first attempts in this direction is made by Mehra [5].
He suggests two iterative methods, namely maximum like-
lihood estimation and covariance matching, to adapt the
covariance of the a priori process and measurement noise
while running the estimator. The former estimates the noise
statistics along the system states by parameterizing the noise
covariance. While the latter strives to match the theoretical
and observed innovations covariance, which corresponds to
optimal filter performance [6]. Maximum likelihood method
is generally utilized to adapt the noise covariance matrix
in applications such as global positioning systems [6]–[8],
power systems [9], object tracking [10] and robotics [11],
[12].

In the sequel, we account for a noise covariance adap-
tation algorithm, which is based on maximum likelihood in
conjunction with extended Kalman filter (EKF). Thus far, we
have used EKF to estimate robot manipulators link velocity



and acceleration (initially introduced in [13] and thoroughly
evaluated in [14]). In fact, this approach has proved to be
modular and computationally light. Furthermore, thanks to
the fusion of various types of sensors, the technique benefits
from high bandwidth. Therefore, the estimator is suitable for
realistic robotic challenges such as collision detection [15],
[16] and control [17]. However, tuning EKF demands large
measurement samples and some extra effort. Moreover, the
sensors characteristics may alter with time and environmental
factors such as temperature or humidity, which can lead to
imprecise estimations. Thus, to decrease the initial tuning
effort as well as the estimation sensitivity to the sensor
changes, we propose a stable method for adapting the noise
covariance in this paper.

This paper is organized as follows. In Sec. II, the problem
at hand is detailed. The estimator of manipulator link vari-
ables is reviewed in Sec. III-A, followed by outlining the
preliminaries of general EKF in Sec. III-B. Subsequently,
we explain a noise covariance adaptation law in Sec. III-C
and propose some approaches for maintaining its stability
in Sec. III-D. In Sec. IV, the setup framework is initially
introduced, followed by experiential evaluation of the link
variable estimator. Finally, the paper concludes in Sec. V.
Figure 1 summarizes the paper topics.

II. PROBLEM STATEMENT AND CONTRIBUTION

Let us assume the reduced rigid body dynamics model of
a serial-chain robot with n joints as [18]

M(q)q̈ +C(q, q̇)q̇ + g(q) = τm − τ f , (1)

where q, q̇, q̈ ∈ Rn denote the link side joint position,
velocity, and acceleration, M(q) ∈ Rn×n the symmetric
and positive definite inertia matrix, C(q, q̇)q̇ ∈ Rn the
centripetal and Coriolis vector, g(q) ∈ Rn the gravity vector,
τm ∈ Rn the active motor torque and τ f ∈ Rn the torque
caused by external effects (e.g., frictions).
Link velocity and acceleration information (q̇, q̈) can be used
to improve robotics algorithms [13]. However, these physical
quantities can not be directly measured. Therefore, we have
to estimate them by fusing multiple sensors in a model-based
observer/estimator. We have, in fact, developed and applied
this estimator to various robotic use cases. Thus, the research
question we strive to answer is as follows:
While manually tuning the estimator may be challenging,
can we improve the estimation accuracy by automatically
adjusting it online? This would also intrinsically decrease
the estimator sensitivity to system/sensor changes over time.
Therefore, the paper’s contributions can be summarized in
the following (see Fig. 1).

• We initially review the method for estimating manipu-
lator link variables.

• Subsequently, we propose a method for adapting the
estimator noise covariance matrices online. Moreover,
some strategies are employed to maintain the observer
stability.

• Finally, we evaluate the theory by performing exper-
iments on a seven-DoF manipulator. For this, each

manipulator link is equipped with one IMU. The results
are also compared against a state-of-the-art algorithm
based on covariance matching techniques.

III. LINK VELOCITY AND ACCELERATION ESTIMATION

This section briefly reviews the method for robot link
velocity and acceleration estimation. Also, we provide details
on how to adapt extended Kalman filter to improve the
estimation performance.

A. Link Velocity and Acceleration Observer

In order to be able to obtain the link i variables by fusing
IMU m with the robot link-side measurements, an estimator
is utilized with the following discrete dynamics model [15]

x̂i(k + 1) = f i(x̂i(k))

=


1 ∆t ∆t2/2 ∆t3/6
0 1 ∆t ∆t2/2
0 0 1 ∆t
0 0 0 1




q̂i(k)
ˆ̇qi(k)
ˆ̈qi(k).̂..
q i(k)

+w(k),

ŷi(k) = hi(x̂i(k)) =

 q̂i(k)
ma(q̂i(k), ˆ̇qi(k), ˆ̈qi(k))

mω(q̂i(k), ˆ̇qi(k))

+ v(k),

(2)

with k ∈ Z+ being the independent variable, ∆t the system
sampling time and xi(k) = [qi(k) q̇i(k) q̈i(k)

...
q i(k)]

T ∈ R4

the system states at epoch k (̂· operator denotes the estimated
counterparts). Furthermore, ...

q i denotes the link i jerk. More-
over, f i : R4 → R4 is the system transition function and hi :
R3 → R7 is the measurement function. Accordingly, ŷi ∈
R7 denotes the estimated measurements. w(k) ∈ R4 and
v(k) ∈ R7 are the white Gaussian process and measurement
noise at epoch k, respectively. Also, IMU m is installed
on link i and outputs Cartesian acceleration ma(qi, q̇i, q̈i) :
R3 → R3 and angular velocity mω(qi, q̇i) : R2 → R3

in frame {m}. According to the algebraic (memory-less)
kinematical equations for rigid bodies [19],

iam = ial +
i ω̇i × ixSm

+ iωi ×
(
iωi × ixSm

)
, (3)

ma = mRi
iam, (4)0

0
q̇i

 =i ωi −i ωi−1,

0
0
q̈i

 =i ω̇i −i ω̇i−1, (5)

mω = iωi (6)

hold. Here, iam ∈ R3 and iω̇i ∈ R3 are the Cartesian
acceleration and angular velocity at sensor location ixSm ∈
R3 in frame {i}, respectively. Moreover, mRi ∈ R3×3 is
the rotation matrix from frame {i} to frame {m}. Since the
angular velocity of a point in rigid bodies is independent of
the location of measurements, (6) holds. According to (5),
for an n-link robot manipulator, the states are estimated
recursively from the first link i = 1 to the last link i = n.
Note that in the absence of the desired trajectory information,
a constant jerk is assumed in (2). Although this assumption
is generally not accurate, it will impose less numerical
instability compared to constant acceleration or velocity



assumptions.
Also note that the state-transition function f i in (2) is
linear. Furthermore, the algebraic measurement function hi

is essentially a second-order polynomial w.r.t the system
state. Therefore, the system (2) nonlinearities are minor,
which makes EKF a suitable choice for estimating the system
states (xi). EKF follows the principles of linear Kalman
filter by linearizing the nonlinear system around the currently
estimated states (x̂i(k)). The linearization is generally based
on Taylor expansion, which implies that EKF works best
when the system nonlinearities are not severe. Therefore,
we have used EKF in conjunction with system (2) for
different applications thus far. We discuss the implementation
preliminaries of extended Kalman filter in the next section.

B. Extended Kalman Filter

As briefly mentioned earlier, the underlying notion of EKF
is based on the linearization of the nonlinear system around
the current state. Let

F i(x̂i(k)) =
∂f i

∂xi
|xi=x̂i(k) ∈ R4×4

H i(x̂i(k)) =
∂hi

∂xi
|xi=x̂i(k) ∈ R7×4 (7)

denote the Jacobian matrices of the state transition and mea-
surement functions in (2) at x̂i(k), respectively. In fact, F i(·)
is the same transition matrix introduced in (2). Moreover,

x̂i(0) = x̂i(k = 0)

P i(0) = E[(xi(0)− x̂i(0)) (xi(0)− x̂i(0))
T
] ∈ R4×4 (8)

are the system initial state and the initial state estima-
tion error covariance matrix, respectively. Here, E[·] de-
notes the expected value. The initial process noise covari-
ance Qi(0) = E[wwT ] ∈ R4×4 and measurement noise
covariance Ri(0) = E[vvT ] ∈ R7×7 for the i-th link, which
are positive definite matrices, are also available. In practice,
the robot can be assumed at rest, initially. Therefore, the
initial state is given by

x̂i(0) =


qi(0)
0
0
0

 , (9)

where qi(0) is the measured link position at k = 0. Depend-
ing on the accuracy of qi(0), the initial (diagonal) estimation
error covariance matrix P i(0) can be set to small values.
Subsequently, EKF undergoes two steps, namely, prediction
and correction at each iteration k.

a) Prediction: The a priori estimates of the states and
estimation error covariance are obtained via the a posteriori
(corrected) estimates of the previous iteration, as

x̂−
i (k) = f i(x̂

+
i (k− 1)) (10)

P−
i (k) = F i(x̂

−
i (k))P

+
i (k− 1)F i

T (x̂−
i (k)) +Qi(k).

(11)

Here ·− and ·+ denote the a priori and a posteriori estimates,
respectively.

b) Correction: Once the new measurements are fed to
the filter, the a priori estimates can be corrected. For this
innovation (zi(k) ∈ R7), which is the difference between
the a priori predicted measurements and the real ones, as
well as its covariance (Si(k) ∈ R7×7) is computed via

zi(k) = yi(k)− hi(x̂
−
i (k)) (12)

Si(k) = H i(x̂
−
i (k))P

−
i (k)H

T
i (x̂

−
i (k)) +Ri(k), (13)

where yi(k) is the sensors output. Note that since we are
dealing with a nonlinear measurement function, Si(k) is the
approximation of the innovation covariance. In fact, the true
innovation covariance is given by

E[ziz
T
i |Z i(k)] = Si(k) + S̃i(k) (14)

with S̃i(k) =

E[
1

4

∂2hi

∂x2
i

(xi − x̂i)
2(xi − x̂i)

2T ∂2hT
i

∂x2
i

+ · · · |Z i(k)]. (15)

Here, Z i(k) = {zi(1), · · · , zi(k)} ∈ R7×k is the time series
of innovations and S̃i is the expected value of the remainder
of Taylor series expansion.
Subsequently, the Kalman gain (K i(k) ∈ R4×7) for the i-th
link is given by

K i(k) = P−
i (k)H

T
i (x̂

−
i (k))S

−1
i (k). (16)

Now we are able to update the estimation and its error
covariance with

x̂+
i (k) = x̂−

i (k) +K i(k)zi(k) (17)

P+
i (k) =

(
I4 −K i(k)H i(x̂

+
i (k))

)
P−

i (k), (18)

where I4 is the identity matrix of size 4.

C. Adaptive Extended Kalman Filter

Kalman filter is, in general, capable of estimating param-
eters (variables with zero dynamics) along with the system
states. Moreover, all the components of (extended) Kalman
filter itself, including the initial state and the corresponding
error covariance, process, and measurement noise covariance,
can be considered as parameters, too [20]. The method we
use for adapting the estimator is based on (i) parameterizing
and (ii) iteratively estimating the noise covariance matri-
ces Qi and Ri. For this we use the innovation zi and
its covariance, which contains both Qi and Ri (substitute
P−

i (k) in (13) with (11)). We formulate this as a maximum
likelihood problem, which seeks to maximize the likelihood
function of noise covariance given the N ∈ Z+ recent
innovations, as [21]

max
θi

L(θi|Z i(N)), (19)

with θi = {Qi,Ri} being the parameters, which corre-
spond to the noise covariance matrices of the i-th link, and
Z i(N) = {zi(k − N + 1), · · · , zi(k)} ∈ R7×N the time
series of N recent innovations. By maximizing L(θi|Z i(N))
we increase the probability of the true parameters with the
N given innovations.
The analytical and iterative solution to (19) is initially
proposed in [5] for linear systems. This method, however,



may violate the positive-definiteness of the noise covariance
matrices [22]. Therefore, we use a modified version proposed
by Mohamed et al. [7], which under some conditions, has
proven to be effective for EKF and nonlinear systems, as
well [23]. Take the moving average (with length N ) of
innovation sequence C̄ i(k) ∈ R7×7 as

C̄ i(k) =
1

N

k∑
j=k−N+1

zi(j)z
T
i (j), (20)

with k ≥ N

the measurement noise covariance matrix is adapted via [7]

Ri(k + 1) = C̄ i(k) +H i(x̂
+
i (k))P

+
i (k)H

T
i (x̂

+
i (k)).

(21)

Moreover, the process noise covariance matrix is approxi-
mately given by [6]

Qi(k + 1) = K i(k)C̄ i(k)K
T
i (k). (22)

As the adaptation laws for the noise covariance matrices are
formulated, we discuss the stability properties of the system
in the next section.

D. Notes on the Adaptation Stability

The estimation error is exponentially bounded in terms of
the mean square, and consequently, the stability of EKF can
be proven if [24]

• the dynamics model fulfills the nonlinear observability
criteria,

• the initial state estimation error and its covariance are
bounded,

• and the positive-definite noise covariance matrices re-
main bounded.

The (local) observability of nonlinear systems is generally
investigated through the observability matrix, obtained based
on Lie derivatives of the nonlinear measurement function
w.r.t. the state transition function [25]. It can be shown
that system (2) is observable [17]. Moreover, with the
practical approach for initializing EKF, explained in Sec. III-
B, the initial condition error can also be assumed to be
bounded. By carefully choosing the initial positive-definite
noise covariance matrices Qi(0) and Ri(0), all three criteria
for a stable conventional (non-adaptive) EKF are fulfilled.
However, with the adaptive laws (21) and (22) discussed in
the previous section, the third stability criterion, which is the
boundedness of the noise covariance, is in question. To the
best of the author’s knowledge, the stability analysis of the
reviewed adaptive extended Kalman filter, in general terms, is
only marginal in the literature. Therefore, we propose several
strategies in this section to maintain the estimator stability,
given the adaptive mechanism.

a) Adaptation at Steady-state: As mentioned earlier,
the proposed non-adaptive EKF is proven to be stable and
can reach a steady state in a finite time. Moreover, note
that the process noise adaptation law (22), which respects
the positive definiteness of the covariance matrix, is the
modified (and reduced) version of the original one proposed

in [7]. The reduced version is valid only at the EKF steady
state [6], where the rate of change of Kalman gain K i as
well as the estimation error covariance matrix P+

i is at
minimum. Therefore, we propose to employ the adaptation
mechanisms (21) and (22) at the EKF steady state. Accord-
ingly, the adaptation may start after some reasonable delay
or, alternatively, once the rate of change of estimation error
covariance drops below a certain threshold δss ∈ R+, as

∥P+
i (k)− P+

i (k− 1)∥2 < δss. (23)

Here, ∥ · ∥2 denotes matrix Euclidean norm.
b) Tunable Adaptation Rate: In order to add a degree

of freedom to the adaptation rate, a forgetting factor α ∈
[0, 1) is used in the literature in various formulations (e.g.
look at [26]–[28]). We introduce the forgetting factor to the
adaptation mechanism as

Ri(k + 1) = αRi(k)+

(1− α)
(
C̄ i(k) +H i(x̂

+
i (k))P

+
i (k)H

T
i (x̂

+
i (k))

)
, (24)

Qi(k + 1) = αQi(k) + (1− α)
(
K i(k)C̄ i(k)K

T
i (k)

)
.

(25)

Obviously, with α = 1 no adaptation takes place.
c) Stopping Criterion: An important property of maxi-

mum likelihood estimate is its consistency, which means that
the estimate converges, in a probabilistic sense, to the true
value of the variable as the number of sampled data grows
without bounds. The maximum likelihood estimate, however,
will generally be biased for a small number of samples [7].
In other words, only with a large enough moving average
window N , the noise covariance matrices may converge to
reliable values.
On the one hand, with a small window N , the adaptation
may diverge and result in instability. In order to investigate
this phenomenon, let l be the first iteration at which the
adaptation mechanism is employed. Since conventional EKF
is assumed to be stable,
∀ k ∈ {1, · · · , l}, ∃βF (k), βH(k), λR(k), λQ(k), λP (k) ∈
R+ such that

∥F i(x̂i(k))∥ ≤ βF (k), ∥H i(x̂i(k))∥ ≤ βH(k),

∥Ri(k)∥ ≤ λR(k), ∥Qi(k)∥ ≤ λQ(k),

∥P i(k)∥ ≤ λP (k),

where ∥·∥ is the matrix induced norm. Note that the positive
definite matrices are bounded by their current maximum
eigenvalues, denoted by λ(·) ∈ R. Moreover, positive definite
matrices are positive operators [29]. This property would let
us benefit from the triangle inequality theorem to determine
the bounds of the induced norms. In particular, for positive
operators A and B and positive scalar c ∈ R+ triangle
inequality is given by

∥A± cB∥ ≤ ∥A∥+ c∥B∥. (26)

Therefore and according to (13), the induced norm of inno-
vation covariance Si(k) is bounded by

∥Si(k)∥ ≤ βS(k) = β2
H(k)

(
β2
F (k)λP (k) + λQ(k)

)
+ λR(k).

(27)



Furthermore, ∥S̃i(k)∥ ≤ βS̃(k) ∈ R+ holds, as the remain-
der of Taylor expansion is bounded, too. According to (14)
and (20), it can be shown that∥∥C̄ i(k)

∥∥ ≤ k

N

(
∥Si(k)∥+ ∥S̃i(k)∥

)
+

k−N

N

(
∥Si(k−N)∥+ ∥S̃i(k−N)∥

)
≤ k

N
βC(k) (28)

holds, for some finite βC(k) ∈ R+. Note that the norm bound
of the windowed innovation covariance C̄ i(k) scales up with
the iteration number k. More specifically, with relatively
small Ns,

∥∥C̄ i(k)
∥∥ grows with each iteration. This might

cause instability, as the adaption laws (21) and (22) are
closely dependent on C̄ i(k).
On the other hand, finding large-enough N might be chal-
lenging. Moreover, large Ns can be computationally expen-
sive, too. Therefore, in order to prevent potential instabilities,
we propose a simple yet effective test to stop the adaptation,
based on the condition number (the ratio between the matrix
maximum and minimum singular values) of the adapted
matrices, as

κ(Ri(k)) > δcnd (29)
Or κ(Qi(k)) > δcnd. (30)

Here, κ(·) : Rp×q → R+ (with p and q being arbitrary
variables) denotes matrix condition number. In other words,
once the condition numbers exceed the threshold δcnd ∈ R+,
the adaption stops, and the system works as a conventional
EKF.
Algorithm 1 summarizes the adaptive EKF, discussed in this
section. Note that the adaptive EKF starting criterion (23)
is examined only as long as it has not held true in this
algorithm. Once the rate of change of P+

i drops below the
threshold δss, adaptive EKF is activated, and this criterion is
no longer investigated. Similarly, once the condition number
of either of noise covariance matrices exceeds the thresh-
old δcnd according to (29) and (30), adaptive EKF stops.

IV. EXPERIMENTAL EVALUATION

This section investigates the theories and topics covered in
Sec. III. Initially, we explain the experiment setup, including
the method to obtain the ground truth signal. Subsequently,
the necessity of using excitation trajectory in the experiments
as well as the implementation, are outlined. Finally, we
evaluate estimator (2) with 7 IMUs installed on all robot
links, with full-body actuation.

A. Experiment Setup

Here, the robot is equipped with one IMU per link.
The acceleration and rotational data is acquired using seven
onboard STMicroelectronics LSM6DSOTR IMU sensors.
The full-scale range is set to 2 g for the accelerometer and
2000 ◦/s for the gyroscope. The output data rate is set
to 6.67 kHz for both sensors. All IMU internal filters are
deactivated. The data acquisition system (DAQ) includes an
Analog Devices LTC2864-1 RS485 Full-Duplex transceiver

Algorithm 1 Adaptive extended Kalman filter for link i

Require: x̂i(0), P i(0), Ri(0), Qi(0) ▷ Conventional EKF
Require: N , α, δss, δcnd ▷ Adaptive EKF

k← 0
AEKF ← false ▷ Do not start the adaptation
while true do

Predict x̂−
i (k) (10)

Predict P−
i (k) (11)

Read current measurements yi(k)
Compute Kalman gain K i(k) (16)
Correct x̂+

i (k) (17)
Correct P+

i (k) (18)
if AEKF is false & (23) is true then

AEKF ← true ▷ Start the adaptation
end if
if k ≥ N & AEKF is true &

(29) is false & (30) is false then
Adapt Ri(k + 1) (24)
Adapt Qi(k + 1) (25)

else
Ri(k + 1)← Ri(k)
Qi(k + 1)← Qi(k)

end if
k← k + 1

end while

on each IMU board and on the main board. The use of high-
bandwidth RS485 transceivers between the IMUs and the
main board allows for faster and more robust communication.
The onboard microcontroller is capable of handling up to
eight sensors and six channels (three for the accelerometer
and three for the gyroscope) per sensor at 10 kS/s/ch.
Consequently, the data is sent (based on the Master request)
via the EtherCAT bus at a 1 kHz sampling rate. A Control
PC (x64) running an Ubuntu 20.04 real-time system hosts the
EtherCAT Master using Etherlab. Finally, the data is recorded
in real-time via Matlab/Simulink in the control PC. Another
real-time system provides the robot with desired velocity
trajectory. The high-fidelity ground truth is obtained based on
numerical differentiation, followed by lag-free filtering of the
encoder measurements. The experimental setup is depicted
in Fig. 2.

B. Excitation Trajectory

In order to fully evaluate the bandwidth of the esti-
mator (2), we move the robot in a persistently exciting
trajectory in full-dynamics motions. These trajectories are
conventionally used for estimating the robot manipulators
dynamics (see, e.g., [30]). The robot is actuated to follow
a 30-second excitation trajectory. This periodic Fourier-like
trajectory [31]

qi(t) = qi,0 +

R∑
r=1

ar,i
rω

sin(rωt)−
R∑

r=1

br,i
rω

cos(rωt), (31)

respects all robot joint limitations from the datasheet. The
number of harmonics in this trajectory is R = 60, and



Fig. 2. The schematic of the experimental setup

the base frequency is ω = 2π/30. These parameters are
obtained via an optimization routine, where robot joint and
torque limits are provided as constraints. These coefficients
are optimized for minimal uncertainty in identifying
robot base parameters [31]. Therefore, this trajectory
persistently excites the system along the whole bandwidth
and subsequently evaluates the estimator (2) performance.

C. Results

In order to fully evaluate the proposed method, the adap-
tive Kalman filter is employed with different settings. Table I
summarizes these settings. EKF refers to conventional EKF
with no adaptation. Moreover, we compare the performance
of our method with the state-of-the-art one, introduced
in [22] (abbreviated by SotA in table I). Instead of maximum
likelihood estimation, the state-of-the-art algorithm employs
covariance matching techniques to adapt the noise covari-
ance. Similar to (13), the innovation covariance is obtained
based on the linearization of the measurement function
via Taylor approximation in SotA. Moreover, α = 0.3 is
proposed to be a stable choice in [22]. The initial condi-
tion, including initial state, state estimation error covariance,
and noise covariance, are equal across different estimators.
Note that the initial noise covariance is obtained based
on large samples from different trajectories. Therefore, the
conventional EKF is supposed to perform well. Due to the
recursive nature of the estimator (2) and accumulation of the
error from the first to the last (seventh) link, seventh link
velocity and acceleration are most challenging to estimate.
Also, we have observed the minimum (if any) improvement
from the conventional EKF to the adaptive EKFs in the last
link. Therefore, as the worst case scenario, Fig. 3 depicts
the seventh link velocity and acceleration estimation based
on different methods, briefed in Tab. I. Moreover, Fig. 4
compares the normalized root-mean-square error (NRMSE)
of the estimations for different scenarios. According to

Fig. 3 (a) and (b), the conventional EKF performs acceptable,
given the finely-tuned initial conditions. Moreover, with the
given trajectory, N = 1000 is a small sample size for
adapting noise covariance. This has resulted in a biased
maximum-likelihood estimation in (19), which degraded the
estimation accuracy in AEKF1 (see Fig. 3 (c) and (d)).
However, with the tight threshold δcnd = 108, the estimator
never diverges. On the other hand, with a looser δcnd =
1012 in AEKF2, the filter diverges for some iterations and
consequently converges again (see Fig. 3 (e) and (f)). This
illustrates the effectiveness of stopping criteria (29) and (30),
where the filter stability is maintained, although N is poorly
chosen. AEKF3 can reduce the noise effects, compared to
conventional EKF (see Fig. 3 (a), (b), (g), (h), (k), and (l)).
This is especially true in the estimated link acceleration (see
Fig. 4 (b),(d)), where the noise effects are more severe. Note
that for better visualization purposes, AKEF2 results are
circumvented from Fig. 4 (a), (b), (c), and (d). Furthermore,
covariance matching is not a suitable technique for adapting
the system (2) noise covariance (see Fig. 3 (i) and (j)).
This may be due to the fact that covariance matching relies
mainly on the innovation covariance matrix given by (13).
However, this variable loses precision in nonlinear systems
because of the Taylor approximation (see (14) and (15)).
On the other hand, although windowed, the true and recent
innovation covariance is employed in maximum likelihood
methods. Moreover, Fig. 4 (e) and (f) show the effects of
the window size N , when the forgetting factor is constant. In
these experiments, the stopping threshold is set to δcnd = 108.
Also, for the given trajectory, when the window size is large
enough (N = 5000), the contribution of forgetting factor (α)
is negligible (see Fig. 4 (g) and (h)). In summary and
according to Fig. 4, the noise covariance adaptation method,
which is discussed in this paper, performs more competently
in the first links when the filter initial condition is tuned
correctly.

TABLE I
DIFFERENT SETTINGS FOR ADAPTIVE EXTENDED KALMAN FILTER

Abbreviation Adaptation Window Forgetting Threshold δcnd in
Method Size N Factor α (29) and (30)

EKF - - - -
AEKF1 (24) and (25) 1000 0.3 108

AEKF2 (24) and (25) 1000 0.3 1012

AEKF3 (24) and (25) 5000 0.3 108

SotA [22] - 0.3 -

V. CONCLUSIONS

In this paper, we initially reviewed a method for estimating
robot manipulators link velocity and acceleration. Tradition-
ally, EKF is used for this purpose. However, EKF is prone to
errors in the dynamics model and noise information provided
to this estimator. Even with precise modeling of the process
and noise, this approach is vulnerable to inevitable sensor
changes caused by environmental effects. Therefore, we dis-
cussed a stable algorithm for adapting the noise covariance
in the estimator. Finally, we evaluated our findings with a
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Fig. 3. Seventh link velocity and acceleration estimation via different
methods, summarized in Tab. I. In this experiment, each robot link is
equipped with one IMU. The robot moves in an excitation trajectory, and all
kinematics states are estimated using estimator (2). Here, the ground truth
(q̇7 and q̈7) is the encoder signal, which is differentiated and filtered via
lag-free filtering methods. Estimated link (a) velocity and (b) acceleration
using conventional EKF. Estimated link (c) velocity and (d) acceleration
using AEKF1. Estimated link (e) velocity and (f) acceleration using AEKF2.
Estimated link (g) velocity and (h) acceleration using AEKF3. Estimated
link (i) velocity and (j) acceleration using SotA. A close comparison of
estimated link (k) velocity and (l) acceleration via EKF and AEKF3 in
short time intervals.

seven-DoF manipulator. Every robot link is equipped with
one IMU in this experiment. Consequently, EKF is initialized
with relatively accurate values obtained from large samples.
In the case of nearly precise initial noise covariance, the
results corresponding to the proposed method are promising,
especially for the first links.
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[15] S. A. B. Birjandi, J. Kühn, and S. Haddadin, “Observer-extended
direct method for collision monitoring in robot manipulators using
proprioception and IMU sensing,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 954–961, April 2020.

[16] S. A. B. Birjandi and S. Haddadin, “Model-adaptive high-speed
collision detection for serial-chain robot manipulators,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 6544–6551, 2020.

[17] S. A. B. Birjandi, N. Dehio, , A. Kheddar, and S. Haddadin, “Robust
Cartesian kinematics estimation for task-space control system,” in
2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Nov 2022.

[18] M. W. Spong, “Modeling and control of elastic joint robots,” Journal
of dynamic systems, measurement, and control, vol. 109, no. 4, pp.
310–318, 1987.

[19] B. Siciliano, O. Khatib, and T. Kröger, Springer handbook of robotics.
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